Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Acta Pharmacol Sin ; 43(12): 3130-3138, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1747246

ABSTRACT

VV116 (JT001) is an oral drug candidate of nucleoside analog against SARS-CoV-2. The purpose of the three phase I studies was to evaluate the safety, tolerability, and pharmacokinetics of single and multiple ascending oral doses of VV116 in healthy subjects, as well as the effect of food on the pharmacokinetics and safety of VV116. Three studies were launched sequentially: Study 1 (single ascending-dose study, SAD), Study 2 (multiple ascending-dose study, MAD), and Study 3 (food-effect study, FE). A total of 86 healthy subjects were enrolled in the studies. VV116 tablets or placebo were administered per protocol requirements. Blood samples were collected at the scheduled time points for pharmacokinetic analysis. 116-N1, the metabolite of VV116, was detected in plasma and calculated for the PK parameters. In SAD, AUC and Cmax increased in an approximately dose-proportional manner in the dose range of 25-800 mg. T1/2 was within 4.80-6.95 h. In MAD, the accumulation ratio for Cmax and AUC indicated a slight accumulation upon repeated dosing of VV116. In FE, the standard meal had no effect on Cmax and AUC of VV116. No serious adverse event occurred in the studies, and no subject withdrew from the studies due to adverse events. Thus, VV116 exhibited satisfactory safety and tolerability in healthy subjects, which supports the continued investigation of VV116 in patients with COVID-19.


Subject(s)
COVID-19 , Nucleosides , Humans , SARS-CoV-2 , Healthy Volunteers , Double-Blind Method , Area Under Curve , China , Administration, Oral , Dose-Response Relationship, Drug
2.
Acta Pharmacol Sin ; 43(4): 788-796, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1343437

ABSTRACT

An epidemic of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. SARS-CoV-2 relies on its spike protein to invade host cells by interacting with the human receptor protein Angiotensin-Converting Enzymes 2 (ACE2). Therefore, designing an antibody or small-molecular entry blockers is of great significance for virus prevention and treatment. This study identified five potential small molecular anti-virus blockers via targeting SARS-CoV-2 spike protein by combining in silico technologies with in vitro experimental methods. The five molecules were natural products that binding to the RBD domain of SARS-CoV-2 was qualitatively and quantitively validated by both native Mass Spectrometry (MS) and Surface Plasmon Resonance (SPR). Anti-viral activity assays showed that the optimal molecule, H69C2, had a strong binding affinity (dissociation constant KD) of 0.0947 µM and anti-virus IC50 of 85.75 µM.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Humans , Protein Binding , SARS-CoV-2
3.
Acta Pharmacol Sin ; 43(2): 483-493, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1205431

ABSTRACT

The COVID-19, caused by SARS-CoV-2, is threatening public health, and there is no effective treatment. In this study, we have implemented a multi-targeted anti-viral drug design strategy to discover highly potent SARS-CoV-2 inhibitors, which simultaneously act on the host ribosome, viral RNA as well as RNA-dependent RNA polymerases, and nucleocapsid protein of the virus, to impair viral translation, frameshifting, replication, and assembly. Driven by this strategy, three alkaloids, including lycorine, emetine, and cephaeline, were discovered to inhibit SARS-CoV-2 with EC50 values of low nanomolar levels potently. The findings in this work demonstrate the feasibility of this multi-targeting drug design strategy and provide a rationale for designing more potent anti-virus drugs.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
4.
Acta Pharmacol Sin ; 41(9): 1167-1177, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-691161

ABSTRACT

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections , Drugs, Chinese Herbal , Flavanones , Flavonoids , Pandemics , Pneumonia, Viral , Virus Replication/drug effects , Administration, Oral , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Enzyme Assays , Flavanones/chemistry , Flavanones/pharmacokinetics , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL